# Using Ozone To Stimulate Oxygen Utilization "It's all about NAD"

Frank Shallenberger, MD, HMD, ABAAM
The Nevada Center of Anti-Aging Medicine
Carson City, Nevada
Ph. 775-884-3990 Fax 775-884-2202
doctor@antiagingmedicine.com

#### Outline

- 1. Aging and the diseases of aging are caused primarily by decreased oxygen utilization.
- 2. This decrease leads to the excessive free radical production that results in degenerative disease.
- 3. Decreased ozygen utilization is caused by both pre-mitochondrial and mitochondrial factors.
- 4. Decreased oxygen utilization exerts its effects by causeing a decrease in the NAD/NADH ratio.
- 5. Ozone therapy is effective for so many diseases including the infirmaties of aging because it normalizes this ratio.

# Aging and the diseases of aging are caused primarily by decreased oxygen utilization

### It Works - But How?

- Coronary artery and cardiovascular disease.
- Claudication.
- Gangrene.
- Pain

- Macular degeneration.
- Aging.
- Oncology.
- Chronic viral infection.

### Oxygen – The Forgotten Nutrient

- The most critical nutrient.
- It's not what you take in, it's what you utilize.
- The difference between you at 20 and you at 70.
- The key to the treatment and prevention of disease is optimum oxygen utilization.
- Local and systemic oxygen utilization.
- The good news oxygen utilization can be measured and improved.

## Oxygen Utilization (Aerobic Capacity)

- The process whereby oxygen metabolizes either fat or glucose into water, heat, NAD (nicotinamide adenine dinucleotide), and ATP.
- Oxygen works through NAD and ATP (and to a lesser degree NADP and FAD). These "oxygen intermediates" are the bottom line for <u>all</u> cellular function.

### Oxygen Utilization



### Aging and Oxygen Utilization

Nothing is as consistent and as predictable as the gradual, linear decline in oxygen utilization seen in all aging populations.



Fig. B. 1-8. Maximal oxygen uptake - men, in ml/kg min (Dehn and Bruce).

## "Meta-analysis of the age associated decline in maximal aerobic capacity in men: relation to training status."

Wilson & Tanaka, Am. J. Physiol. Heart Circ. Physiol. Vol. 278: 829-834, 2000

- Maximal aerobic capacity means maximal oxygen utilization.
- "Maximal aerobic capacity [not VO2max] is an independent risk factor for cardiovascular disease, cognitive dysfunction, and all cause mortality."
- Even highly trained marathon runners showed a decrease in oxygen utilization. This means that oxygen utilization is the determining factor in aging not VO2max
- VO2 max is neither global nor sensitive enough.

Premature ageing in mice expressing defective mitochondrial DNA polymerase.

Trifunovic A, Wredenberg A, et al. *Nature.* 2004 May 27;429(6990):417-23.

- Mice are genetically manipulated to develop mtDNA mutations at a rapid rate. This results in an accelerated reduction in oxygen utilization over their lifespan.
- Significantly reduced lifespan.
- Premature onset of age-related phenotypes such as lean body mass loss, alopecia, kyphosis, anemia, osteoporosis, reduced fertility, and cardiomegaly.
- These results provide a causative link between decreased oxygen utilization and aging.

Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer.

Speakman JR, Talbot DA, et al. *Aging Cell*. 2004 Jun;3(3):87-95.

- Examined associations between longevity and individual variations in resting oxygen utilization in a cohort of mice.
- A positive association between oxygen utilization and lifespan was noted.
- Mice in the upper quartile of oxygen utilization lived
   36% longer than mice in the lowest quartile.

- Varanasi SS, Francis RM, et al. Mitochondrial DNA deletion associated oxidative stress and severe male osteoporosis. Osteoporos Int. 1999;10(2):143-9.
- Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res. 2003 Apr;76(4):397-403.

- Patwari P, Lee RT. Thioredoxins, mitochondria, and hypertension. Am J Pathol. 2007 Mar;170(3):805-8.
- Eerola E, Pulkki K, et al. Abnormal mitochondria in cultured synovial fibroblasts in rheumatoid and reactive arthritis? Br J Rheumatol. 1988;27 Suppl 2:128-31.

- Modica-Napolitano JS, Kulawiec M, et al. Mitochondria and human cancer. Curr Mol Med. 2007 Feb;7(1):121-31.
- Gerbitz KD, Gempel K, Brdiczka D.
   Mitochondria and diabetes. Genetic,
   biochemical, and clinical implications of the
   cellular energy circuit. Diabetes. 1996
   Feb;45(2):113-26.

- Biskup S, Moore DJ. Detrimental deletions: mitochondria, aging and Parkinson's disease.Bioessays. 2006 Oct;28(10):963-7.
- Moreira PI, Cardoso SM, et al. The key role of mitochondria in Alzheimer's disease. J Alzheimers Dis. 2006 Jul;9(2):101-10.

- Tsutsui H. Oxidative stress in heart failure: the role of mitochondria.
   Intern Med. 2001 Dec;40(12):1177-82.
- Marin-Garcia J, Goldenthal MJ. Heart mitochondria signaling pathways: appraisal of an emerging field. J Mol Med. 2004 Sep;82(9):565-78

### The Stages Of The Aging Process



Disease

Decreased oxygen utilization causes degeneration changes secondary to excessive free radical activity.

### Free Radical Damage is Caused By Decreased Oxygen Utilization

"Decreased oxygen utilization is <u>toxic to the cell</u> by exacerbating free radical generation in membranes housing electron transfer assemblies."

Antioxidant Adaptation
Levine & Kidd

 Decreased oxygen utilization creates a "functional hypoxia" which 1) accelerates free radical formation, and 2) exhausts anti-oxidant buffering capacity.





# Decreased oxygen utilization is caused by both pre-mitochondrial and mitochondrial factors.

## What Causes Decreased Oxygen Utilization?

#### **Pre-Mitochondrial**

- 1. Decreased lypolysis.
- 2. Hypoglycemia
- 3. Ischemia.
- 3. Hypoxia.
- Decreased methylation.
- 5. Inflammation

#### **Mitochondrial**

- 1. Toxicity and infections.
- 2. Stress.
- 3. Nutritional deficiencies.
- 4. Hormonal deficiencies.
- 5. Decreased fitness.

Decreased oxygen utilization exerts its negative effects by causing a decrease in the NAD/NADH ratio.





Pentose Phosphate Pathway

### Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease

Lin SJ, Guarente L. Current Opinion in Cell Biology 2003, 15:241–246

- "NAD has emerged as a putative metabolic regulator of transcription, longevity and several age-associated diseases, including diabetes, cancer and neurodegenerative diseases."
- "Calorie restriction (CR) has been shown to decrease the incidence or delay the onset of some of these diseases."
- "Studies in yeast suggest that CR functions by increasing the NAD level and/or the NAD/NADH ratio."

### NAD and Cell Signaling

- NAD is rate limiting for ADP-ribosylation. ADP-ribosylation reactions are involved in cell signaling and the control of many cell processes in the cell nucleus, including DNA repair, apoptosis, and telomere maintenance.
- Another function of NAD in cell signaling is as a precursor of cyclic ADP-ribose, which regulates intracellular calcium channels.

#### NAD and Sirtuins

- Sir stands for Silent Information Regulator genes. Sir2 is short for Silent mating type Information Regulatior-2. So sirtuins are Sir2homologs. Sirtuins act by removing acetyl groups from proteins in the presence of NAD.
- Sirtuins are hypothesized to play a key role in an organism's response to stresses (such as heat or starvation) and to be responsible for the lifespan-extending effects of calorie restriction.
- The sirtuins regulate nuclear transcription through deacetylating histones and altering nucleosome structure. These activities of sirtuins are particularly interesting because of their importance in the <u>regulation of aging</u>.
- <u>Sirtuins are NAD-dependent</u>, and are thus classified as "NAD dependent deacetylases.

Ozone therapy is effective for so many diseases including the infirmaties of aging because it normalizes the NAD/NADH ratio.

### ENERGY



Generator 
$$\Rightarrow 0_2 + 0_3$$

### Ozone Forms Peroxides

- Free radicals only in a pH greater than 8.
- Reacts ionically with double bonds to produce peroxides called ozonides.
- Most ozonides are formed from the short chained lipids in cell membranes.

- Ozonides are stable for days to weeks, easily penetrate cell membranes, and are selectively reactive.
- Once in the cells, these ozonides oxidize NADH to NAD.

### It's All About The NAD/NADH Ratio

- Oxygen does not directly catalyze cellular reactions. It indirectly catalyzes them with NAD.
- The normal cytosol ratio of NAD/NADH is 700, guaranteeing an emphasis on oxidation.
- When NAD catalyzes a reaction, it is converted to NADH.
- The problem with decreased oxygen utilization is that is results in decreased levels of NAD.
- As the NAD/NADH ratio decreases, <u>all</u> cellular activity slows down.
- NADH is removed in order to achieve a healthy NAD/NADH ratio.
- The decrease in NADH further decreases oxygen utilization.
- Ozone therapy, by oxidizing NADH to NAD corrects the ratio and thus improves oxygen utilization by stimulating increasing levels of NADH.
- Oxidation therapies are enhanced with the addition of oral NADH.

### Pharmacological Stimulation of NADH Oxidation Ameliorates Obesity and Related Phenotypes in Mice.

Hwang JH, Kim DK, Jo EJ, et al. Diabetes Apr;58(4):965-74. Epub 2009 Jan 9

- The NAD/NADH ratio "plays a crucial role in cellular energy metabolism, and dysregulated NAD/NADH ratio is implicated in metabolic syndrome."
- Used beta-lapachone to oxidize NADH in diet-induced obesity mice.
- NADH oxidation "strongly provoked mitochondrial fatty acid oxidation in vitro and in vivo, and dramatically ameliorated their key symptoms such as increased adiposity, glucose intolerance, dyslipidemia, and fatty liver."
- "The treated mice also showed higher expressions of the genes related to mitochondrial energy metabolism (PGC-1alpha, NRF-1) and caloric restriction (Sirt1), consistent with the increased mitochondrial biogenesis and energy expenditure."
- "Conclusions: Pharmacological activation of NADH oxidation by NQO1 resolves obesity and related phenotypes in mice, opening the possibility that it may provide the basis for a new therapy for the treatment of metabolic syndrome."

### It Happens Locally

- Chronic localized pain is caused by localized areas of chronically decreased oxygen utilization.
- Vicious cycle starts with trauma or infection.
- Edema, inflammation, hyper-coagulation, and endothelial damage lead to localized decreased oxygen utilization.
- Decreased oxygen utilization disables the healing mechanisms, and condition becomes chronic resulting in permanent edema, inflammation, hyper-coagulation, endothelial damage, and pain.

### Take Home Message

The most effective way to maximize the effects of ozone therapy is to combine it with other therapies aimed at eliminating the causes of decreased oxygen utilization