
DOES OZONETHERAPY HAVE A FUTURE IN MEDICINE ?

V. BOCCI Department of Physiology of the University of Siena, Italy

1616

ALVEOLAR LINING LAYER THICKNESS

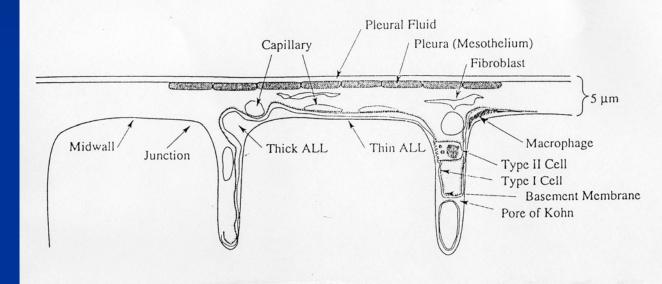


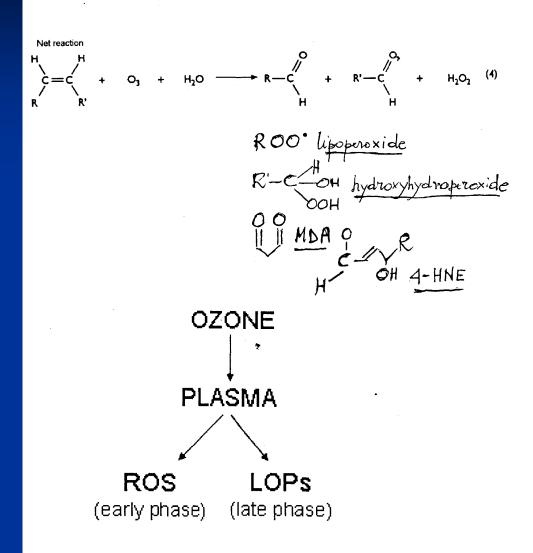
FIG. 1. Alveolar lining layer (ALL) and its relationship to pleura and alveolar wall. ALL is thin at midwall and thick and thin at alveolar junctions. Very rapid freezing could be achieved because cryoprobe in contact with pleural fluid was within a few micrometers of ALL on outermost alveolar wall. Lengths of alveolar walls are not to scale, and thickness is exaggerated for clarity.

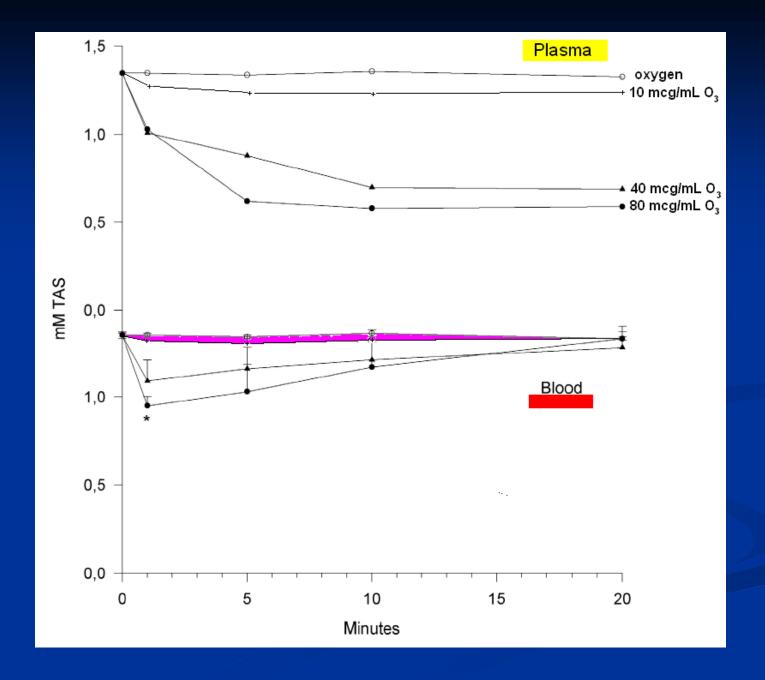
BASTACKY J. et al., 1995 J. Appl. Physid. 79, 1615

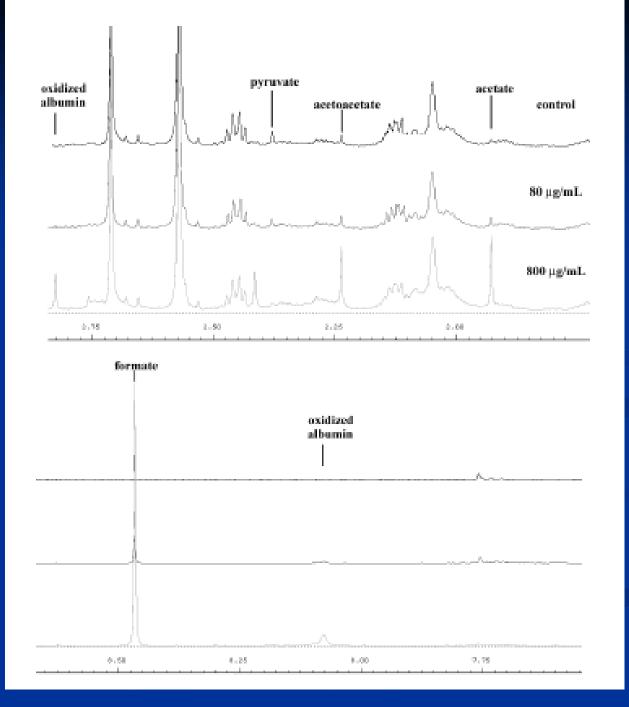
A comparison between the composition of ELF and blood of a normal 70 Kg human showing the great difference in antioxidant capacity of these two fluids.

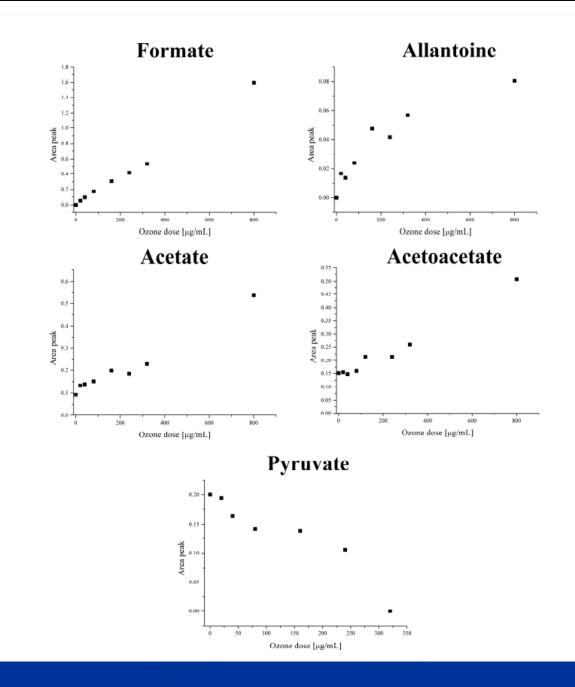
ELF	Blood
Volume: 17-20 ml	Plasma volume: ~2.7 L
	Erythrocytes: ~2.3 Kg
Total proteins:~7mg/ml	Total plasmaproteins:~75 mg/ml
(total:~130mg)	(total: ~202.5 g)
Albumin: ~3.5 mg/ml	Albumin: ~45 mg/ml
(total: ~63 mg)	(total: ~ 121.5 g)
Transferrin: ~0.3 mg/ml	2-4 mg/ml
Ceruloplasmin:~ 25µg/ml	140-400 µg/ml
Lactoferrin: ~0.5 µg/ml	?
GSH: 300-400 μM	in plasma: ~3µM
	in erythrocytes: ~2.2 mM
Vitamin E: ~2 µg/ml	10-20 µg /ml
Vitamin C: ~3.5 µg/ml	$\sim 9 \mu g/ml$
Uric acid: ~0.05 mg/ml	0.04-0.07 mg/ml
Glucose: ~0.4 mg/ml	0.7-1.0 mg/ml
Total Bilirubin: ?	~1.0 mg/dL
Na:~82; Cl:~84; K:~29 mM	Na:~139; Cl:~103; K:~4 mM
рН: 6.9	pH: 7.4

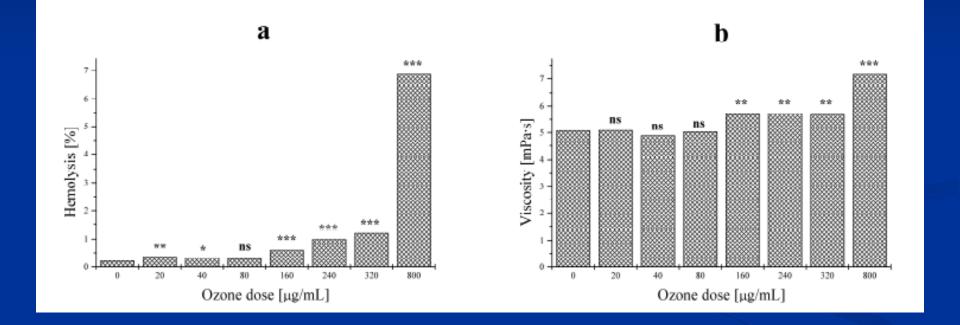
Data reported by Schultze and Heremans, (1966); Davis and Pacht, 1997; Di Simplicio et al., 1998; Hawgood, 1997; Repine and Heffner (1997); Whitsett, 1997.

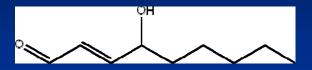


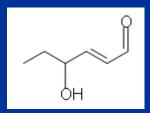

OZONIZATION OF BLOOD ASA "CALCULATED AND TRANSIENT **OXIDATIVE STRESS**" in 100 ml blood


Ascorbic acid	~ 1.5 mg
Uric acid	~4.5 mg
Glucose	~ 60.0 mg
Albumin	~ 2700 mg
Bilirubin	~0.5 mg
Cysteine etc	


As primary quenching agents of at most 8 mg O₃


HOW DOES OZONE ACT? HOW AND WHY CAN WE AVOID OZONE TOXICITY?



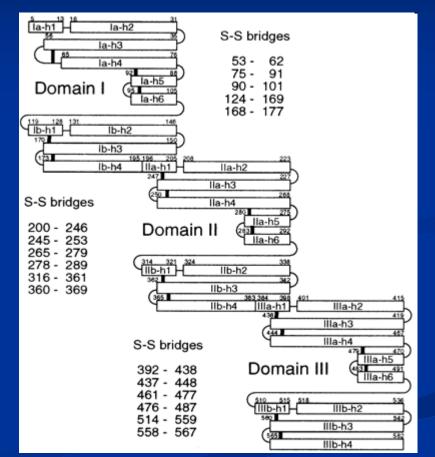


HOW ALDEHYDES' TOXICITY IS AVOIDED?

Among Lipid Oxidation Products (LOPs), the quantitatively most relevant aldehyde is *trans*-4-hydroxy-2-nonenal (HNE)

HNE is a normally detectable molecule (0,7-1,0 microM) and on its own, is very unstable and toxic. It mainly derives from arachidonic acid (ω-6 PUFA) From ω-3 PUFA, such as docosahexaenoic acid (DHA) derives another aldehyde: the *trans*-4-hydroxy-2-hexenal (HHE)

Which is the fate of these aldehydes? Most of them form an adduct with either free GSH or they react with Cys 34 or His and Lys of albumin.


HUMAN SERUM ALBUMIN

It has a molecular mass of 67kDa constituted by 585 amino acids

It contains seventeen pairs of disulfide briges (S-S linkages), one free Cys(34) and 11 accessible nucleophilic residues, two of which constituted by Lys(199) and His(146). During ozonation, within 40 sec, it can bind up to eleven 4-HNE molecules. The rate constant of HNE albumin-trapping with the formation of adducts is far higher than GSH!

Besides the crucial functions of regulating the pH and oncotic pressure, albumin acts as an endogenous detoxifying agent of circulating reactive carbonyl species.

Within three homologous domains there are three hydrophobic pockets, transporting PUFAs, unconjugated bilirubin , hormones, and drugs and bound HNE

S. Sugio, A. Kashima, S. Mochizuki, M. Noda, and K. Kobayashi Crystal structure of human serum albumin at 2.5 Å resolution Protein Eng. 1999 12: 439-446; doi:10.1093/protein/12.6.439

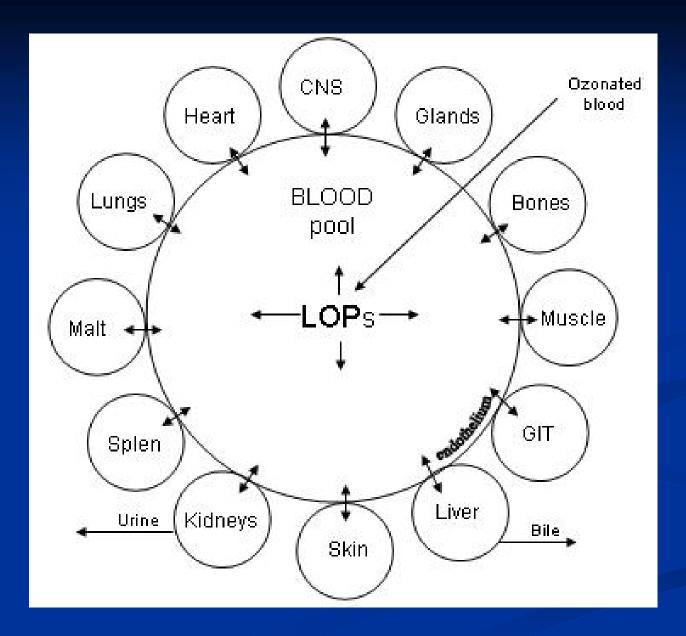
THE PHARMACOKINETIC AND FATE OF FREE ALDEHYDES AND ADDUCTS

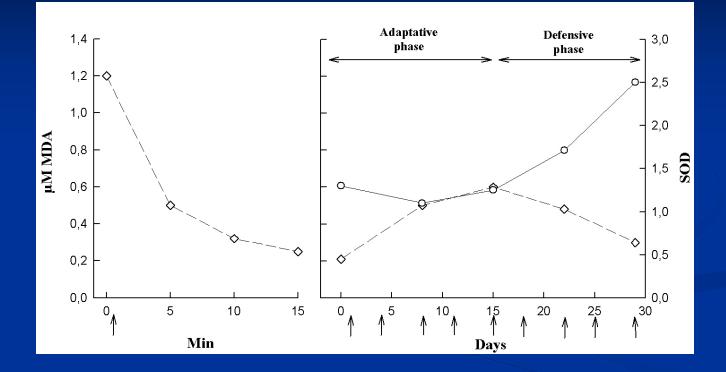
1. FORMATION OF ALBUMIN-HNE ADDUCTS

Assuming to ozonate 200 ml of blood with an ozone dose of 8 mg, the presence of about 4-5 g of albumin can easily bind all the formed HNE.

2. DILUTION IN THE PLASMATIC AND EXTRAVASCULAR ALBUMIN POOL

During the infusion of the ozonated blood into the patient, the albumin-HNE adducts will firstly dilute within the intravascular albumin pool represented by about 130 g albumin and then with the extravascular pool containing about 170 g albumin. Thus, in a total body pool of about 300 g albumin, the ozonated aliquot is less than 1.1%


3. DETOXIFICATION


This is operated very rapidly inside billions of cells by available GSH and at least three enzymes such as aldehyde dehydrogenase, aldose reductase and glutathione S-transferase.

4. EXCRETION

HNE metabolized as mercapturic acid had been detected in urine and in bile after hepatic detoxification.

THESE FOUR PROCESSES INDICATE THAT HNE PRODUCED DURING BLOOD OZONATION WILL EVENTUALLY INFORM CELLS AT SUBMICROMOLAR LEVELS, INDICATING ITS IMPORTANT ROLE AS LONG-ACTING MESSENGER ABLE TO INDUCE UPREGULATION OF ANTIOXIDANT ENZYMES AND HEME-OXYGENASE-1 OR, IN OTHER WORDS, TO COUNTERACT THE CHRONIC OXIDATIVE STRESS INDUCED BY DIABETES, ATHEROSCLEROSIS ETC

An AMRD patient's response to a single (left side) or intermittent (right side) infusion of O_3 -AHT (300 g blood treated with an ozone dose of 21 mg per session). MDA, malonyldialdehyde (\Diamond) and Mn-SOD (U/ml plasma, O) are reported on the ordinate. Arrows indicate the time of blood reinfusion

Table 2

 $Determination \ of \ plasma \ levels \ (mean \pm S.D.) \ of \ the \ following \ parameters \ on \ whole \ blood \ samples \ immediately \ after \ exposure \ to \ argon, \ oxygen \ and \ progressively \ increasing \ ozone \ concentrations$

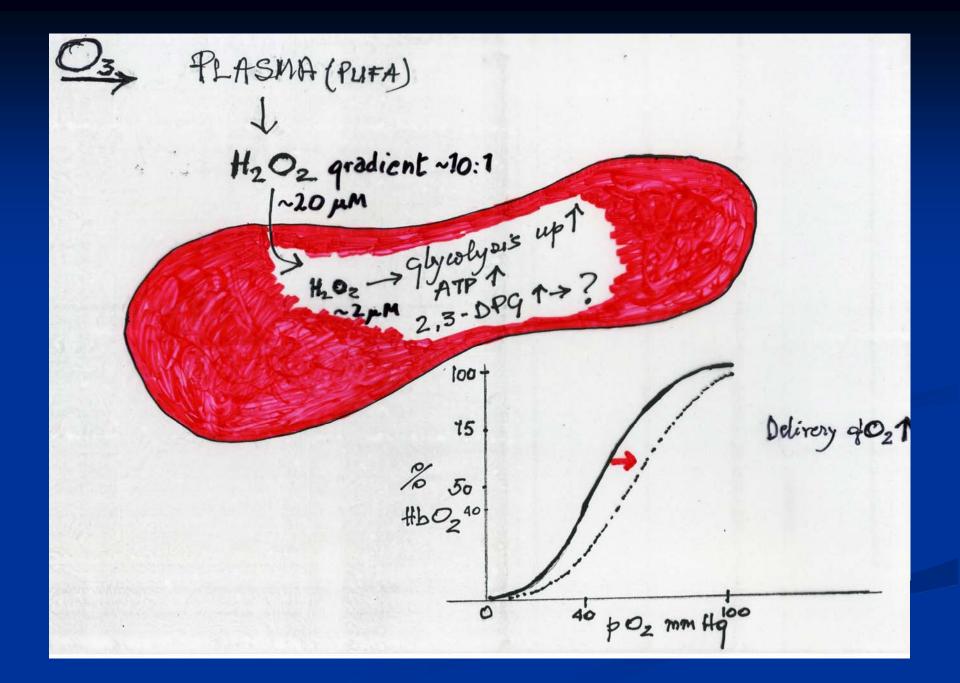
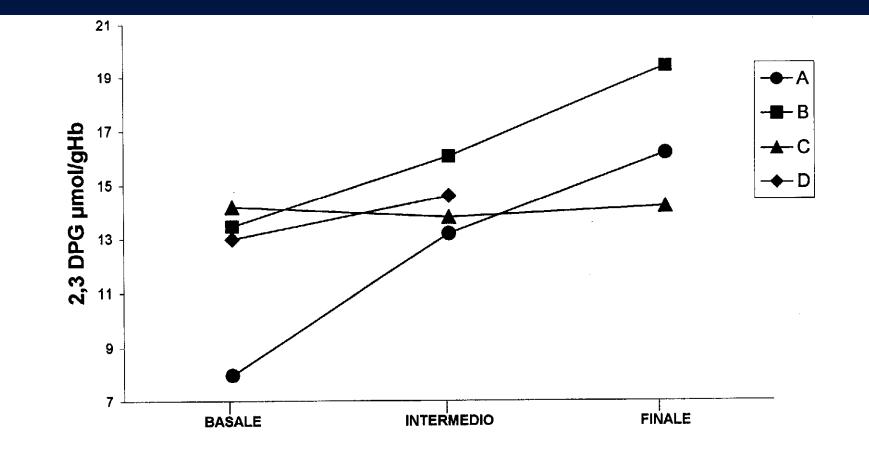
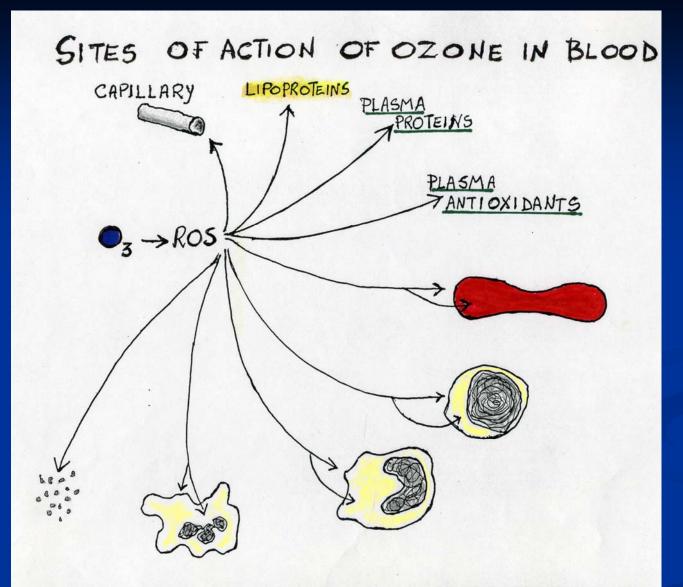
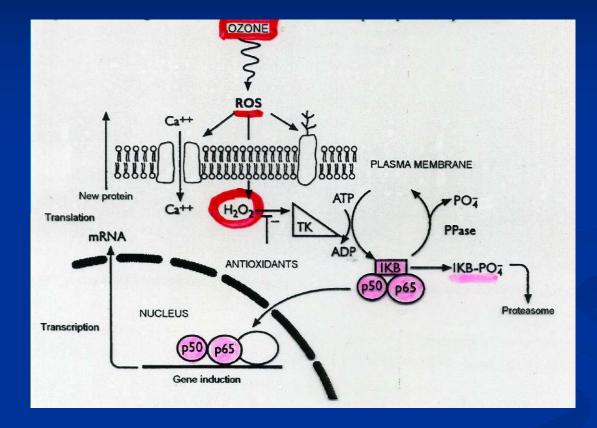

Gas treatment Fibrinogen (mg/dL)		Cholesterol (mg/dL)		Triglycerides (mg/dL)		HDL (mg/dL)		LDL (mg/dL)		
	Heparin	Citrate	Heparin	Citrate	Heparin	Citrate	Heparin	Citrate	Heparin	Citrate
Ar	272 ± 29.5	260 ± 11.2	156 ± 8.5	150 ± 10.7	61 ± 19.3	44 ± 6.8	63 ± 5.7	61 ± 8.5	75 ± 10.1	72 ± 3.1
O ₂	260 ± 28.1	263 ± 3.5	156 ± 9.4	150 ± 11.4	62 ± 18.8	43 ± 4.4	64 ± 5.7	62 ± 7.7	76 ± 9.4	70 ± 6.3
20	255 ± 31.8	254 ± 7.0	156 ± 7.1	156 ± 7.5	62 ± 19.1	45 ± 4.4	64 ± 4.9	63 ± 8.2	76 ± 7.4	73 ± 11.2
40	250 ± 24.3	264 ± 10.4	157 ± 8.8	158 ± 9.2	64 ± 19.3	48 ± 5.1	62 ± 6.5	63 ± 9.3	76 ± 6.6	76 ± 6.6
80	248 ± 27.5	268 ± 5.7	158 ± 11.0	157 ± 2.5	65 ± 19.0	48 ± 6.4	61 ± 5.0	65 ± 7.9	77 ± 8.8	78 ± 6.8
160	262 ± 7.0	262 ± 10.1	156 ± 8.1	159 ± 5.7	61 ± 19.6	49 ± 6.6	63 ± 4.5	64 ± 7.6	75 ± 8.0	79 ± 6.4

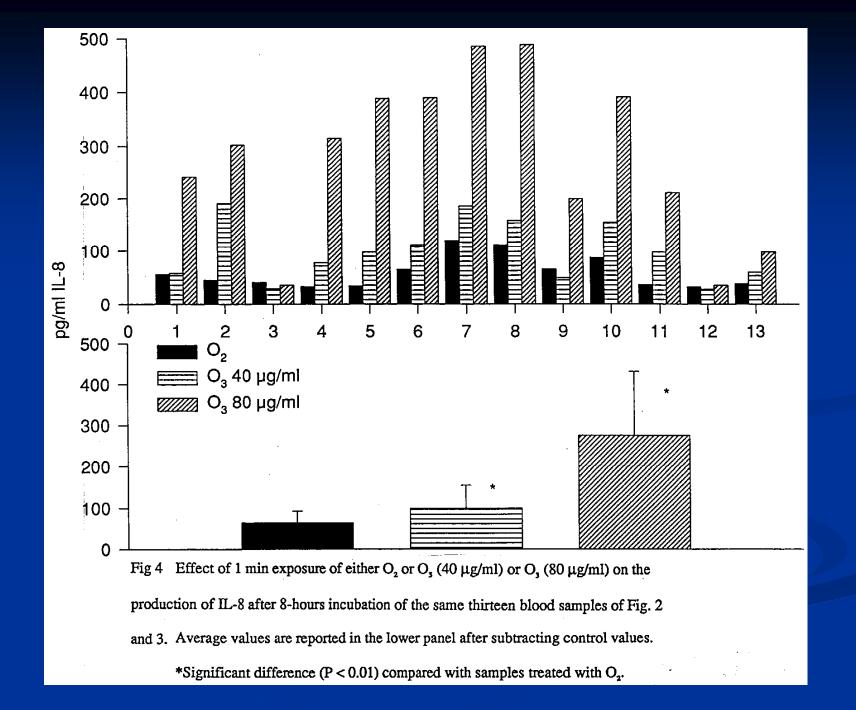
Table 3

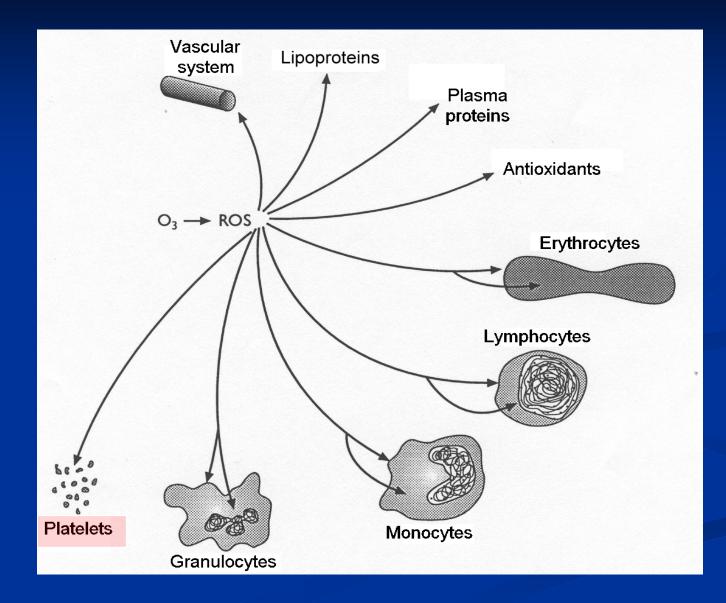
Enzymatic levels (U/g Hb) in human blood after exposing blood samples to either O₂ or O₃

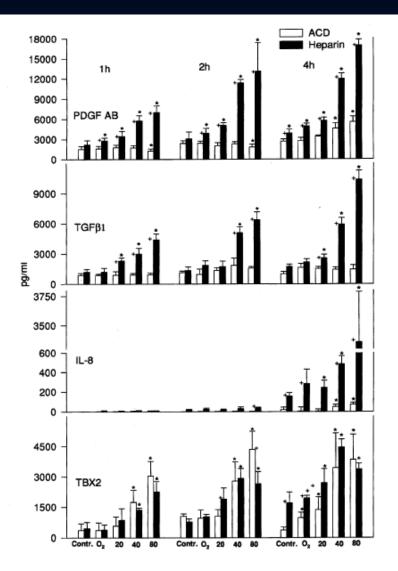
Treatment	Enzymatic levels (U/g Hb)					
	SOD	GSH-Px	GSH-Rd	G6PDH		
Ar	830.2 ± 249.6	24.4 ± 5.8	2.1 ± 0.5	5.2 ± 2.4		
O ₂	836.9 ± 293.6	19.1 ± 5.8	2.0 ± 0.5	5.3 ± 2.4		
20	726.8 ± 197.5	25.2 ± 6.4	2.0 ± 0.6	5.7 ± 2.6		
40	694.7 ± 140.9	25.8 ± 6.1	2.1 ± 0.5	5.2 ± 2.7		
80	670.8 ± 185.5	27.2 ± 6.1	2.1 ± 0.4	5.6 ± 3.0		
80	670.8 ± 185.5	27.2 ± 6.1	2.1 ± 0.4	5.6 ±		

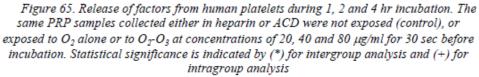
Values represent mean \pm S.D. (n = 6).

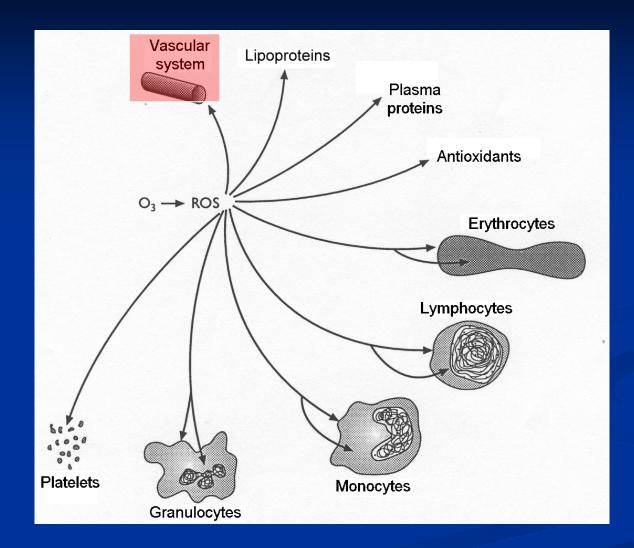




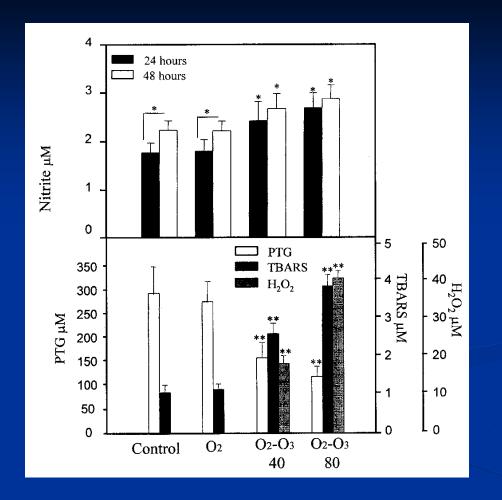

Figura 39: Variazione dei livelli di 2,3 DPG in 4 pazienti, nel corso di terapia con EBOO. Sono riportati i livelli basali (BASALE), dopo circa 6-7 trattamenti (INTERMEDIO), e alla fine dei trattamenti (FINALE).

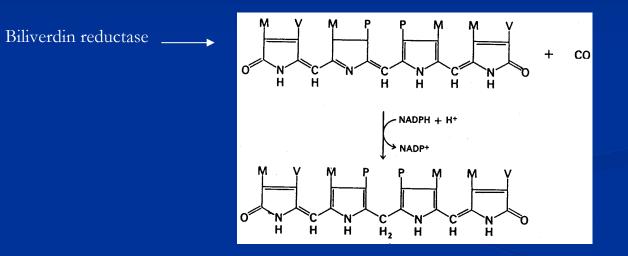



IN THE CELL, THE EFFECTIVE STIMULUS MATERIALIZES WHEN THE CONCENTRATION OF ROS transiently SURPASSES THE CAPACITY OF THE CELLULAR ANTIOXIDANT DEFENCE SYSTEM









Effect of different concentrations of ozone on the production of nitrite by HUVECs, 24 and 48 hr after addition of ozonized human serum (top panel). Effect of either oxygen or ozone on PTG, TBARS and H_2O_2 levels in the serum before addition to HUVECs. The data are presented as the $M \pm SD$ of 6 different experiments

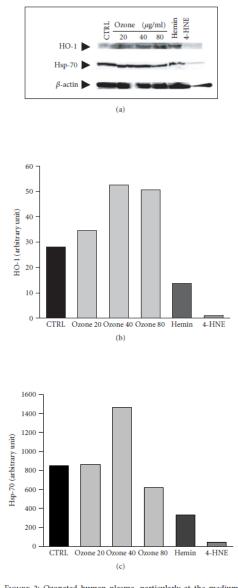
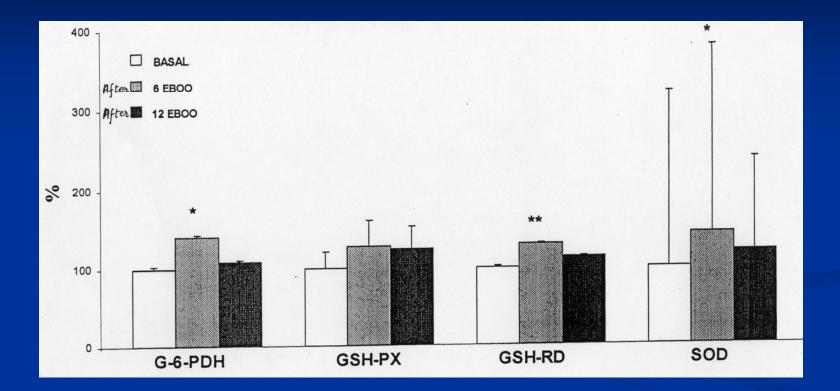



Figure 2: Ozonated human plasma, particularly at the medium ozone concentration of $40\,\mu$ g/mL per mL of blood activates both HO-1 and Hsp-70 in human endothelial cells. The signals of both protein levels were determined by densitometric analysis of the scanned images. Data are expressed as arbitrary units. One representative Western blot of a typical experiment is shown in the top panel.

Evaluation of G6PDH activity in total, "young" and "old" red blood cells in ARMD patients after an ozonetherapy cycle (mean \pm standard deviation) n=4.

	G6PDH activity +			% "Young"	% "Old"
	Total RBCs	"Young" RBCs	"Old" RBCs	RBCs*	RBCs*
Before treatment	356.8 ±90.7	550.3 ±157.5	310.7 ±127.3	3.1 ±2.8	96.9 ±2.8
After treatment	406.2 ±40.4	748.2 ±181.9	434.8 ± 86.7	3.4 ±3.0	96.6 ±3.8

+G6PDH activity expressed as nmoles/h/mg Hb hi whole erythrocyte population and in young and old fractions before and after $13 O_2/O_3$ treatments; *percentage of young and old erythrocytes obtained from whole blood by isopycnic

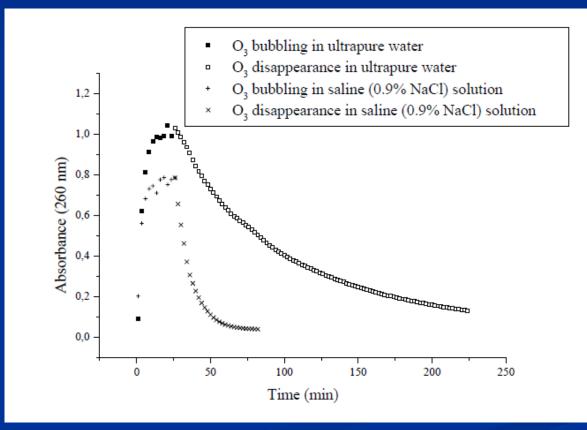
2ND PART NEW METHODOLOGIES AND PROBLEMS

FOLLOWING THE OPEN LETTER OF PROF. E. NAZAROV AND MY ANSWER AND SOME WORRYING INFORMATION FROM Dr. A. SCHWARZ

It is useful to continue the discussion on the issues of clarifying and using the best technological advances

1) HAS THE POSTULATION THAT A MINOR AHT PERFORMED WITH BLOOD SUBJECTED TO A SUPER-OZONE OXIDATION, PLUS UVI AND PLUS HEAT STRESS USED IN CHD COMPROMISED THE FUTURE OF A CORRECT OZONETHERAPY

The procedure used an expensive device (VC7000A system, Celacade[™], Vasogen Inc, Mississauga, ON, Canada) where it was able to deliver an enormously toxic dose of ozone (107.5 mg per mL of blood) plus a further blood oxidation due to UV irradiation at 42.5 °C. The final ozone dose is about 15.000-fold higher than the average ozone dose used during the classical ozonated autohemotherapy [69] and the extremely high oxidation of blood causes a complete denaturation of blood components [4]. Two IM treatments were given on consecutive days, followed by a third on day 14. Subsequent treatments were given at 4 week (28 days) intervals for at least 22 weeks, for a total of 8 injections.


- 2) Plastic bags regularly used for blood storage are unsuitable as, in the presence of ozone, they release phthalates and plastic microparticles into blood. Neutral glass bottles are idoneous.
- 3) A German ozone generator producer publicizes the use of a direct IV infusion of oxygen-ozone. This procedure is probably used by naturopathics or charlatans . It has not a rationale and is potentially dangerous. It will further discredit ozonetherapy.
- 4) The same producer publicizes the use of a direct intraperitoneal insufflation of oxygen-ozone in human cancer before a definite pre-clinical data. In noexpert hands, it may be dangerous and useless.
 - 5) It has now become fashionable to use the IV infusion of ozonated saline

As a physician, having practised for years in a charity clinic, I vividly remember how busy an expert dialysis technician and myself were in performing no more than a dozen O_3 -AHTs in a afternoon.

In the case of Cubans, to apply the rectal O_3 insufflation to all patients, which, for several reasons, is another unreliable approach.

It is unfortunate that the practice of using ozonated saline has become common in Russia and is widely used because it is inexpensive and less time-consuming than major AHT and simultaneously applicable to many patients. As it could be foreseen, physicians have started to use it also in Italy, Spain, Greece and Turkey. Ikonomidis et al. (2005) in Greece, have reported that they maintain the saline solution under a constant flow of O_3 during transfusion but they warned that the maximum amount of O_3 daily administered is usually 4-5 mg and should never exceed 8-10 mg. In their publication they also stated "if we exceed these rates, the over coagulation syndrome starts" and they strongly recommended to perform coagulation tests before starting therapy. These precautions reinforce our preliminary objection to this approach. Moreover, Foksinski et al. (1999) have measured 8-oxodeoxyguanosine, a typical oxidative DNAdamage in lymphocytes of atherosclerotic patients after the IV infusion of ozonated saline, that is aresult never detected after O₃-AHT. Fortunately to the best of our knowledge, Russian physicians ozonize the saline with very low O3 concentrations (2-3 µg/mL) and this precaution certainly reduces toxicity but it leaves open the aspect of therapeutic efficacy.

However if the water contains NaCl, the extremely high reactivity of O_3 induces a complex series of reactions with the possible progressive formation of H_2O_2 , unstable OCl-, NaClO₄, OH, 1O_2 and some unstable O_3 . Razumovski, Ershov et al (2008); Bocci et al, (2009) have evaluated the complexity of O_3 reactions and rapidity of its decomposition. Here we enclose our diagram.

For human use it would be unwise to use O₃ concentration over 3 μg/mL (3 mg/L).
 Moreover it is essential to establish the volume per minute of the gas mixture O₂-O₃. The problem is that different ozone generators have variable gas output: if it is 1 L per minute, the O₃ delivered to 200 mL of saline would be 3 mg/L but, if the output per minute is equivalent to 3 litres of gas, then the actual dose of O₃ delivered will be 9 mg/L! As a consequence one must properly instruct the ozonetherapist in relation to the owned ozone generator as otherwise one risk to poison the patient.

2) The period of ozonation time also ought to be well defined in relation to the volume of saline because in the case of saline solution an ozonation time of 20 min appears enough to reach a plateau.

3) Another aspect to be clearly defined **if gas bubbling will continue or not during the IV** infusion period. This is because, as soon as the gas bubbling is stopped, the concentration of H_2O_2 remains fairly stable but the O_3 concentration will halve during the next 30 min and this affects the therapeutic result.

4) Moreover the blood flow in the cubital vein varies considerably in different patients and in women and this implies that a fairly constant infusion of ozonated saline versus a variable blood flow and content of antioxidants implies an uncertain blood/H₂O₂
5) Owing to the fact that H₂O₂ is one of the most important ROS generated by O₃, since 2005

CONCLUSIONS

This is a good opportunity to ponder on the future of ozonetherapy. The FDA, although well and continuously informed, will not accept ozonetherapy unless randomized and controlled clinical studies performed with ozonated autohemotherapy and published in reliable peer-reviewed journals show the validity and atoxicity of this approach.

In Germany, ozonetherapy is accepted as a NON CONVENTIONAL TREATMENT. Thus, in spite of good basic studies; we are still *in limbo*. You may be satisfied with the results in your own practice but you must realize that official medicine disregards and objects our work.

THANKS FOR YOUR ATTENTION